Dietary energy source and feeding levels during the rearing period affect ovarian follicular development and oocyte maturation in gilts

Theriogenology. 2010 Jul 15;74(2):202-11. doi: 10.1016/j.theriogenology.2010.02.002. Epub 2010 May 10.

Abstract

Fifty-four Landrace x Yorkshire gilts (59.0 +/- 4.2 kg and 147 +/- 3 d old) were used to examine the effects of dietary energy source (starch or mixed fat) at high [112.5% of energy requirements recommended by NRC (1998)], normal (100%), and low (87.5%) energy feeding levels on ovarian follicular development and oocyte maturation. Forty-seven estrus gilts were slaughtered at Day 19 after the second estrus; oocytes were recovered from follicles >4 mm in diameter, and matured in vitro for 44 h. Gilts fed high-energy diets had more follicles >4 mm (mean, 25.8 vs. 19.1, P < 0.05) and more oocytes that reached metaphase II (80.3 vs. 64.0%, P < 0.05) than those fed the low-energy diet. Furthermore, gilts fed starch-rich diets had enhanced oocyte nuclear maturation relative to those fed fat-rich diets (75.4 vs. 68.0%, P < 0.05). Compared to the lower-energy feeding groups, high-energy feeding groups had higher (P < 0.05) blood concentrations of postprandial insulin (1562.4 vs. 990.0 ng/4 h), IGF-I (321.2 vs. 256.9 ng/mL), and LH pulses (2.7 vs. 1.4 pulses/6 h). Follicular fluid concentrations of IGF-I (198.5 vs. 143.1 ng/mL) and estradiol (152.6 vs. 124.8 ng/mL) were higher (P < 0.05) in the high-energy group than in the normal group. Compared with gilts fed the high-energy diet supplemented with fat, gilts fed the high-energy diet supplemented with starch had a tendency (P < 0.10) towards increased IGF-I concentration in both blood and follicular fluid, and improved oocyte nuclear maturation during culture in vitro. We inferred that starch-rich, high-energy diets during rearing may improve ovarian follicular development and oocyte maturation in replacement gilts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed*
  • Animals
  • Diet*
  • Female
  • Gene Expression Profiling
  • Oocytes / growth & development*
  • Ovarian Follicle / growth & development*
  • Swine / growth & development*