Plasmonic properties of Fischer's patterns: polarization effects

Phys Chem Chem Phys. 2010 Jul 7;12(25):6810-6. doi: 10.1039/b925923f. Epub 2010 May 6.

Abstract

We report the fabrication and the optical study of Fisher's patterns inscribed on glass slides. Such structures, fabricated by electron beam lithography, consist of gold nanotriangles, organized in a hexagonal arrangement. By changing the fabrication conditions, it is possible to control precisely the size of the structures and the gap distance between facing triangles but most importantly, to finely tune their localized surface plasmon resonance. In addition to the experimental studies, the plasmonic properties of the Fischer's patterns were characterized as a function of the polarization of the incoming light. Finite difference time domain (FDTD) method was used to support the experimental results and to investigate the electromagnetic field enhancement on a Fischer's pattern lattice unit for different wavelengths and polarization of the irradiation source.