Mo + C codoped TiO(2) using thermal oxidation for enhancing photocatalytic activity

ACS Appl Mater Interfaces. 2010 Apr;2(4):1173-6. doi: 10.1021/am100011c.

Abstract

The photocatalytic activity of TiO(2) is enhanced mainly through heightening absorption of UV-vis light and improving the separation efficiency of photoinduced electrons and holes. The recent new theoretical research revealed that the TiO(2) codoped with Mo + C is considered to be an optimal doping system. On the basis of this theory, the Mo + C codoped TiO(2) powders were first experimentally synthesized by thermal oxidizing a mixture of TiC and MoO(3) powders in the air. The XRD patterns and the XPS survey spectrum showed that carbon (C) acted as a Ti-O-C band structure and molybdenum (Mo) existed as Mo(6+) in anatase TiO(2). The Mo+C codoped TiO(2) had a 32 nm red shift of the spectrum onset compared with pure anatase TiO(2), and its band gap was reduced from 3.20 to 2.97 eV. The photocurrent of the Mo + C codoped TiO(2) was about 4 times as high as that of pure anatase TiO(2), and its photocatalytic activity on decomposition of methylene blue was enhanced.

Publication types

  • Research Support, Non-U.S. Gov't