Hydrogenation of nanocrystalline Mg at room temperature in the presence of TiH(2)

J Am Chem Soc. 2010 May 19;132(19):6616-7. doi: 10.1021/ja910944w.

Abstract

Magnesium and magnesium-based alloys are considered attractive candidates as rechargeable hydrogen storage materials because of their high hydrogen storage capacities (theoretically up to 7.6 wt %), reversibility, and low cost. In this work, the hydrogenation of nanocrystalline magnesium at room temperature in the presence of TiH(2) was studied. The magnesium was derived by dehydrogenation of nanostructured MgH(2)-0.1TiH(2) prepared by using an ultra-high-energy and high-pressure planetary milling technique. Significant uptake of hydrogen by magnesium at room temperature was observed. The results demonstrate that the nanostructured MgH(2)-0.1TiH(2) system is superior to undoped nano- or micrometer-scaled MgH(2) with respect to the hydrogenation properties of magnesium at room temperature. This finding is potentially useful for a range of energy applications including mobile or stationary hydrogen fuel cells, cooling medium in electricity generation, and differential pressure compressors.