Multidrug resistance in oral squamous cell carcinoma: The role of vacuolar ATPases

Cancer Lett. 2010 Sep 28;295(2):135-43. doi: 10.1016/j.canlet.2010.03.019. Epub 2010 Apr 24.

Abstract

Resistance to chemotherapy agents is the main reason for treatment failure in patients with cancer. Multidrug resistance (MDR) is the primary mechanism that leads to the acquisition of the multiresistant phenotype through the overexpression of drug efflux transporters such as the P-glycoprotein (Pgp), encoded by the MDR1 gene, at the plasma membrane. Other molecules that have been implicated in drug resistance include multidrug resistance-associated proteins, glutathione S-transferase-pi, and DNA topoisomerase II. These molecules, however, cannot fully explain MDR in oral squamous cell carcinoma. Vacuolar ATPase (V-ATPase), which is largely responsible for regulating acidity in the microenvironment of solid tumors (and hence interfering with the absorption of chemotherapy drugs), seems to be the most important molecule involved in MDR in such tumors. Specific V-ATPase inhibitors, thus, may be useful, not only as coadjuvants in antitumor treatments but also as a mechanism for controlling resistance to antitumor drugs.

Publication types

  • Review

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / physiology
  • Carcinoma, Squamous Cell / drug therapy*
  • Drug Resistance, Multiple
  • Drug Resistance, Neoplasm
  • Humans
  • Mouth Neoplasms / drug therapy*
  • Vacuolar Proton-Translocating ATPases / physiology*

Substances

  • ABCB1 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Vacuolar Proton-Translocating ATPases