On-chip integrated multi-thermo-actuated microvalves of poly(N-isopropylacrylamide) for microflow injection analysis

Anal Chim Acta. 2010 Apr 30;665(2):107-12. doi: 10.1016/j.aca.2010.03.024. Epub 2010 Mar 19.

Abstract

An array of thermo-actuated poly(N-isopropylacrylamide) (PNIPAAm) multivalves was designed and fabricated to perform volume-based sample injection for microflow injection analysis on a glass microfluidic chip. The PNIPAAm monolithic plug valves were prepared inside the vinylized glass channels by photopolymerization in water-ethanol (1:1) medium using 2-hydroxy-2-methyl propiophenone (Darocure-1173) as the initiator and a photo-mask for micropattern transferring. Experimental conditions for the photopolymerization were studied, and the thermo-responsive behavior of the synthesized monolithic plug valves was investigated. To perform active heating and cooling of the on-chip integrated thermo-actuated valves, micro-Peltier devices were used and operation times of 3-s for opening and 7-s for closing were obtained. In the close status, a 2-mm long monolithic plug valve could endure a pressure of no higher than 0.45 MPa. The volume-based sample and reagent injector was composed of two groups of valves (total valve number of 5) and two loops. When the two groups of valves were alternatively opened and closed via thermo-actuation, the sampling loops were able to be switched between loading and injection position without any mechanical moving parts. Cooperating with syringe pumps, the microfluidic chip with the integrated sample injector has been demonstrated for microflow injection chemiluminescence detection of hydrogen peroxide. For a sampling volume of 6 nL, linear response was observed over the H(2)O(2) concentration range of 0-2 mmol L(-1), and a precision of 0.6% (RSD, n=11) was achieved for a standard H(2)O(2) solution 2 mmol L(-1).