Isolation, structure, and stability of a dodecanethiolate-protected Pd(1)Au(24) cluster

Phys Chem Chem Phys. 2010 Jun 21;12(23):6219-25. doi: 10.1039/b927175a. Epub 2010 Apr 14.

Abstract

A dodecanethiolate-protected Pd(1)Au(24)(SC(12)H(25))(18) cluster, which is a mono-Pd-doped cluster of the well understood magic gold cluster Au(25)(SR)(18), was isolated in high purity using solvent fractionation and high-performance liquid chromatography (HPLC) after the preparation of dodecanethiolate-protected palladium-gold bimetal clusters. The cluster thus isolated was identified as the neutral [Pd(1)Au(24)(SC(12)H(25))(18)](0) from the retention time in reverse phase columns and by elemental analyses. The LDI mass spectrum of [Pd(1)Au(24)(SC(12)H(25))(18)](0) indicates that [Pd(1)Au(24)(SC(12)H(25))(18)](0) adopts a similar framework structure to Au(25)(SR)(18), in which an icosahedral Au(13) core is protected by six [-S-Au-S-Au-S-] oligomers. The optical absorption spectrum of [Pd(1)Au(24)(SC(12)H(25))(18)](0) exhibits peaks at approximately 690 and approximately 620 nm, which is consistent with calculated results on [Pd(1)@Au(24)(SC(1)H(3))(18)](0) in which the central gold atom of Au(25)(SC(1)H(3))(18) is replaced with Pd. These results strongly indicate that the isolated [Pd(1)Au(24)(SC(12)H(25))(18)](0) has a core-shell [Pd(1)@Au(24)(SC(12)H(25))(18)](0) structure in which the central Pd atom is surrounded by a frame of Au(24)(SC(12)H(25))(18). Experiments on the stability of the cluster showed that Pd(1)@Au(24)(SC(12)H(25))(18) is more stable against degradation in solution and laser dissociation than Au(25)(SC(12)H(25))(18). These results indicate that the doping of a central atom is a powerful method to increase the stability beyond the Au(25)(SR)(18) cluster.