Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection

Lab Chip. 2010 May 7;10(9):1167-73. doi: 10.1039/b920062b. Epub 2010 Feb 9.

Abstract

Ultrafast laser writing of waveguides in glasses is a very flexible and simple method for direct on-chip integration of photonic devices. In this work we present a monolithic optofluidic device in fused silica providing label-free and spatially-resolved sensing in a microfluidic channel. A Mach-Zehnder interferometer is inscribed with the sensing arm orthogonally crossing the microfluidic channel and the reference arm passing over it. The interferometer is integrated either with a microchannel fabricated by femtosecond laser technology or into a commercial lab-on-chip for capillary electrophoresis. The device layout, made possible by the unique three-dimensional capabilities of the technique, enables label-free sensing of samples flowing in the microchannel with spatial resolution of about 10 microm and limit of detection down to 10(-4) RIU.