Organization of spin- and redox-labile metal centers into Langmuir and Langmuir-Blodgett films

Dalton Trans. 2010 May 21;39(19):4508-16. doi: 10.1039/b926023d.

Abstract

New sal₂(trien) ligands that contain alkoxy substituents of various length in meta position of the phenolate entities were coordinated to electronically and magnetically active iron(III) and cobalt(III) centers. The electrochemical and spectroscopic properties of these amphiphilic complexes are virtually unaffected upon alteration of the alkoxy substituents, thus providing a system in which the physical behavior and the metal-centered chemical activity can be tailored independently. The amphiphilic character has been exploited for preparing Langmuir monolayers at the air-water interface and for constructing Langmuir-Blodgett films, hence allowing for hierarchical assembling of electronically and magnetically active systems. While Langmuir films were stable, transfer onto solid supports was limited, which restricted the magnetic analysis of the Langmuir-Blodgett assemblies.