Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe(1-x)Co(x))2As2: from isotropic to a strongly k-dependent gap structure

Phys Rev Lett. 2010 Feb 12;104(6):067002. doi: 10.1103/PhysRevLett.104.067002. Epub 2010 Feb 9.

Abstract

The temperature and magnetic field dependence of the in-plane thermal conductivity kappa of the iron-arsenide superconductor Ba(Fe(1-x)Co(x))2As2 was measured down to T approximately 50 mK and up to H = 15 T as a function of Co concentration x in the range 0.048 < or = x < or = 0.114. At H = 0, a negligible residual linear term in kappa/T as T-->0 at all x shows that the superconducting gap has no nodes in the ab plane anywhere in the phase diagram. However, while the slow H dependence of kappa(H) at T-->0 in the underdoped regime is consistent with a superconducting gap that is large everywhere on the Fermi surface, the rapid increase in kappa(H) observed in the overdoped regime shows that the gap acquires a deep minimum somewhere on the Fermi surface. Outside the antiferromagnetic-orthorhombic phase, the superconducting gap structure has a strongly k-dependent amplitude.