Demonstration of atomic frequency comb memory for light with spin-wave storage

Phys Rev Lett. 2010 Jan 29;104(4):040503. doi: 10.1103/PhysRevLett.104.040503. Epub 2010 Jan 27.

Abstract

We present a light-storage experiment in a praseodymium-doped crystal where the light is mapped onto an inhomogeneously broadened optical transition shaped into an atomic frequency comb. After absorption of the light, the optical excitation is converted into a spin-wave excitation by a control pulse. A second control pulse reads the memory (on-demand) by reconverting the spin-wave excitation to an optical one, where the comb structure causes a photon-echo-type rephasing of the dipole moments and directional retrieval of the light. This combination of photon-echo and spin-wave storage allows us to store submicrosecond (450 ns) pulses for up to 20 mus. The scheme has a high potential for storing multiple temporal modes in the single-photon regime, which is an important resource for future long-distance quantum communication based on quantum repeaters.

MeSH terms

  • Photons*
  • Quantum Theory*
  • Time Factors