Anomalous state sandwiched between Fermi liquid and charge ordered Mott-insulating phases of Ti4O7

Phys Rev Lett. 2010 Mar 12;104(10):106401. doi: 10.1103/PhysRevLett.104.106401. Epub 2010 Mar 8.

Abstract

The Magnéli phase Ti(4)O(7) exhibits two sharp jumps in resistivity with coupled structural transitions as a function of temperature at T(c1) approximately 142 K and T(c2) = 154 K. We have studied electronic structure changes across the two transitions using 7 eV laser, soft x-ray, and hard x-ray (HX) photoemission spectroscopy (PES). Ti 2p-3d resonant PES and HX PES show a clear metallic Fermi edge and mixed valency above T(c2). The low temperature phase below T(c1) shows a clear insulating gap of approximately 100 meV. The intermediate phase between T(c1) and T(c2) indicates a pseudogap coexisting with remnant coherent states. HX PES and complementary calculations have confirmed the coherent screening in the strongly correlated intermediate phase. The results suggest the existence of a highly anomalous state sandwiched between the mixed-valent Fermi liquid and charge ordered Mott-insulating phase in Ti(4)O(7).