Mechanical alloying of biocompatible Co-28Cr-6Mo alloy

J Mater Sci Mater Med. 2010 Jul;21(7):2021-6. doi: 10.1007/s10856-010-4066-9. Epub 2010 Apr 3.

Abstract

We report on an alternative route for the synthesis of crystalline Co-28Cr-6Mo alloy, which could be used for surgical implants. Co, Cr and Mo elemental powders, mixed in an adequate weight relation according to ISO Standard 58342-4 (ISO, 1996), were used for the mechanical alloying (MA) of nano-structured Co-alloy. The process was carried out at room temperature in a shaker mixer mill using hardened steel balls and vials as milling media, with a 1:8 ball:powder weight ratio. Crystalline structure characterization of milled powders was carried out by X-ray diffraction in order to analyze the phase transformations as a function of milling time. The aim of this work was to evaluate the alloying mechanism involved in the mechanical alloying of Co-28Cr-6Mo alloy. The evolution of the phase transformations with milling time is reported for each mixture. Results showed that the resultant alloy is a Co-alpha solid solution, successfully obtained by mechanical alloying after a total of 10 h of milling time: first Cr and Mo are mechanically prealloyed for 7 h, and then Co is mixed in for 3 h. In addition, different methods of premixing were studied. The particle size of the powders is reduced with increasing milling time, reaching about 5 mum at 10 h; a longer time promotes the formation of aggregates. The morphology and crystal structure of milled powders as a function of milling time were analyzed by scanning electron microscopy and XR diffraction.

MeSH terms

  • Chromium Alloys / chemical synthesis*
  • Chromium Alloys / chemistry
  • Microscopy, Electron, Scanning
  • Molybdenum / chemistry*
  • Particle Size
  • Powders
  • X-Ray Diffraction

Substances

  • Chromium Alloys
  • Powders
  • Molybdenum