Discovery and design of DNA and RNA ligase inhibitors in infectious microorganisms

Expert Opin Drug Discov. 2009 Dec 1;4(12):1281-1294. doi: 10.1517/17460440903373617.

Abstract

BACKGROUND: Members of the nucleotidyltransferase superfamily known as DNA and RNA ligases carry out the enzymatic process of polynucleotide ligation. These guardians of genomic integrity share a three-step ligation mechanism, as well as common core structural elements. Both DNA and RNA ligases have experienced a surge of recent interest as chemotherapeutic targets for the treatment of a range of diseases, including bacterial infection, cancer, and the diseases caused by the protozoan parasites known as trypanosomes. OBJECTIVE: In this review, we will focus on efforts targeting pathogenic microorganisms; specifically, bacterial NAD(+)-dependent DNA ligases, which are promising broad-spectrum antibiotic targets, and ATP-dependent RNA editing ligases from Trypanosoma brucei, the species responsible for the devastating neurodegenerative disease, African sleeping sickness. CONCLUSION: High quality crystal structures of both NAD(+)-dependent DNA ligase and the Trypanosoma brucei RNA editing ligase have facilitated the development of a number of promising leads. For both targets, further progress will require surmounting permeability issues and improving selectivity and affinity.