High on-off conductance switching ratio in optically-driven self-assembled conjugated molecular systems

ACS Nano. 2010 Apr 27;4(4):2411-21. doi: 10.1021/nn100295x.

Abstract

A new azobenzene-thiophene molecular switch is designed, synthesized, and used to form self-assembled monolayers (SAM) on gold. An "on/off" conductance ratio up to 7 x 10(3) (with an average value of 1.5 x 10(3)) is reported. The "on" conductance state is clearly identified to the cis isomer of the azobenzene moiety. The high on/off ratio is explained in terms of photoinduced, configuration-related changes in the electrode-molecule interface energetics (changes in the energy position of the molecular orbitals with respect to the Fermi energy of electrodes) in addition to changes in the tunnel barrier length (length of the molecules). First principles density functional calculations demonstrate a better delocalization of the frontier orbitals as well as a stronger electronic coupling between the azobenzene moiety and the electrode for the cis configuration over the trans one. Measured photoionization cross sections for the molecules in the SAM are close to the known values for azobenzene derivatives in solution.

Publication types

  • Research Support, Non-U.S. Gov't