Vitamin D regulates macrophage cholesterol metabolism in diabetes

J Steroid Biochem Mol Biol. 2010 Jul;121(1-2):430-3. doi: 10.1016/j.jsbmb.2010.03.018. Epub 2010 Mar 23.

Abstract

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). In type 2 diabetics, the prevalence of vitamin D deficiency is 20% higher than in non-diabetics, and low vitamin D levels nearly double the relative risk of developing CVD compared to diabetic patients with normal vitamin D levels. However, the mechanism(s) by which vitamin D deficiency leads to an increased susceptibility to atherosclerosis in these patients is unknown. We studied the effects of vitamin D replacement on macrophage cholesterol metabolism and foam cell formation in obese, hypertensive diabetics and non-diabetic controls. We found that 1,25-dihydroxy vitamin D3 [1,25(OH)2D3] suppressed foam cell formation by reducing acetylated low density lipoprotein (AcLDL) and oxidized low density lipoprotein (oxLDL) cholesterol uptake in diabetics only. 1,25(OH)2D3 downregulation of c-Jun N-terminal kinase activation reduced PPARgamma and CD36 expression, and prevented oxLDL-derived cholesterol uptake. In addition, 1,25(OH)2D3 suppression of macrophage endoplasmic reticulum stress improved insulin signaling, downregulated SR-A1 expression, and prevented oxLDL- and AcLDL-derived cholesterol uptake. The results of this research reveal novel insights into the mechanisms linking vitamin D signaling to foam cell formation in diabetics and suggest a potential new therapeutic target to reduce cardiovascular risk in this population.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Atherosclerosis / metabolism
  • Cardiovascular Diseases / complications
  • Cholesterol / metabolism*
  • Diabetes Complications / metabolism
  • Diabetes Mellitus / metabolism*
  • Foam Cells / metabolism
  • Gene Expression Regulation*
  • Humans
  • Inflammation
  • Insulin / metabolism
  • Macrophages / metabolism*
  • Risk
  • Vitamin D / metabolism*

Substances

  • Insulin
  • Vitamin D
  • Cholesterol