F-TIMER: fast tensor image morphing for elastic registration

IEEE Trans Med Imaging. 2010 May;29(5):1192-203. doi: 10.1109/TMI.2010.2043680. Epub 2010 Mar 18.

Abstract

We propose a novel diffusion tensor imaging (DTI) registration algorithm, called fast tensor image morphing for elastic registration (F-TIMER). F-TIMER leverages multiscale tensor regional distributions and local boundaries for hierarchically driving deformable matching of tensor image volumes. Registration is achieved by utilizing a set of automatically determined structural landmarks, via solving a soft correspondence problem. Based on the estimated correspondences, thin-plate splines are employed to generate a smooth, topology preserving, and dense transformation, and to avoid arbitrary mapping of nonlandmark voxels. To mitigate the problem of local minima, which is common in the estimation of high dimensional transformations, we employ a hierarchical strategy where a small subset of voxels with more distinctive attribute vectors are first deployed as landmarks to estimate a relatively robust low-degrees-of-freedom transformation. As the registration progresses, an increasing number of voxels are permitted to participate in refining the correspondence matching. A scheme as such allows less conservative progression of the correspondence matching towards the optimal solution, and hence results in a faster matching speed. Compared with its predecessor TIMER, which has been shown to outperform state-of-the-art algorithms, experimental results indicate that F-TIMER is capable of achieving comparable accuracy at only a fraction of the computation cost.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Algorithms*
  • Animals
  • Brain / anatomy & histology
  • Diffusion Tensor Imaging*
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods*
  • Imaging, Three-Dimensional
  • Mice
  • Subtraction Technique