Chemical dealloying mechanism of bimetallic Pt-Co nanoparticles and enhancement of catalytic activity toward oxygen reduction

Chemistry. 2010 Apr 19;16(15):4602-11. doi: 10.1002/chem.200902263. Epub 2010 Mar 16.

Abstract

The chemical dealloying mechanism of bimetallic Pt-Co nanoparticles (NPs) and enhancement of their electrocatalytic activity towards the oxygen reduction reaction (ORR) have been investigated on a fundamental level by the combination of X-ray absorption spectroscopy (XAS) and aberration-corrected scanning transmission electron microscopy (STEM). Structural parameters, such as coordination numbers, alloy extent, and the unfilled d states of Pt atoms, are derived from the XAS spectra, together with the compositional variation analyzed by line-scanning energy-dispersive X-ray spectroscopy (EDX) on an atomic scale, to gain new insights into the dealloying process of bimetallic Pt-Co NPs. The XAS results on acid-treated Pt-Co/C NPs reveal that the Co-Co bonding in the bimetallic NPs dissolves first and the remaining morphology gradually transforms to a Pt-skin structure. From cyclic voltammetry and mass activity measurements, Pt-Co alloy NPs with a Pt-skin structure significantly enhance the catalytic performance towards the ORR. Further, it is observed that such an imperfect Pt-skin surface feature will collapse due to the penetration of electrolyte into layers underneath and cause further dissolution of Co and the loss of Pt. The electrocatalytic activity decreases accordingly, if the dealloying process lasts for 4 h. The findings not only demonstrate the importance of appropriate treatment of bimetallic catalysts, but also can be referred to other Pt bimetallic alloys with transition metals.

Keywords: catalytic activity; cobalt; nanoparticles; oxygen reduction reaction; platinum.