Thermal polymorphism and decomposition of Y(BH(4))(3)

Inorg Chem. 2010 Apr 19;49(8):3801-9. doi: 10.1021/ic902279k.

Abstract

The structure and thermal decomposition of Y(BH(4))(3) is studied by in situ synchrotron radiation powder X-ray diffraction (SR-PXD), (11)B MAS NMR spectroscopy, and thermal analysis (thermogravimetric analysis/differential scanning calorimetry). The samples were prepared via a metathesis reaction between LiBH(4) and YCl(3) in different molar ratios mediated by ball milling. A new high temperature polymorph of Y(BH(4))(3), denoted beta-Y(BH(4))(3), is discovered besides the Y(BH(4))(3) polymorph previously reported, denoted alpha-Y(BH(4))(3). beta-Y(BH(4))(3) has a cubic crystal structure and crystallizes with the space group symmetry Pm3m and a bisected a-axis, a = 5.4547(8) A, as compared to alpha-Y(BH(4))(3), a = 10.7445(4) A (Pa3). Beta-Y(BH(4))(3) crystallizes with a regular ReO(3)-type structure, hence the Y(3+) cations form cubes with BH(4)(-) anions located on the edges. This arrangement is a regular variant of the distorted Y(3+) cube observed in alpha-Y(BH(4))(3), which is similar to the high pressure phase of ReO(3). The new phase, beta-Y(BH(4))(3) is formed in small amounts during ball milling; however, larger amounts are formed under moderate hydrogen pressure via a phase transition from alpha- to beta-Y(BH(4))(3), at approximately 180 degrees C. Upon further heating, beta-Y(BH(4))(3) decomposes at approximately 190 degrees C to YH(3), which transforms to YH(2) at 270 degrees C. An unidentified compound is observed in the temperature range 215-280 degrees C, which may be a new Y-B-H containing decomposition product. The final decomposition product is YB(4). These results show that boron remains in the solid phase when Y(BH(4))(3) decomposes in a hydrogen atmosphere and that Y(BH(4))(3) may store hydrogen reversibly.