Ni(III)/(IV) bis(dicarbollide) as a fast, noncorrosive redox shuttle for dye-sensitized solar cells

J Am Chem Soc. 2010 Apr 7;132(13):4580-2. doi: 10.1021/ja100396n.

Abstract

Nickel bis(dicarbollide) is used as a fast, one-electron outer sphere redox couple in dye-sensitized solar cells. Device performances with this anionic shuttle are investigated with different electrolyte concentrations and additives, using only 0.030 M of the Ni(III) bis(dicarbollide) to efficiently regenerate the ruthenium dye. Atomic layer deposition of Al(2)O(3) on the nanoparticulate TiO(2) photoanodes is further used to improve device performances, increasing current densities almost 2-fold and attaining power conversion efficiencies approximately 10x greater than its metallocene analogue, ferrocene/ferrocenium. Open-circuit voltage decay is used to probe the kinetics of the Ni(III)/(IV) bis(dicarbollide) redox couple, and electron interception is found to be approximately 10(3)x slower than ferrocene/ferrocenium, explaining the large discrepancy in open-circuit voltage potentials between these two redox shuttles.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.