Acute polyglutamine expression in inducible mouse model unravels ubiquitin/proteasome system impairment and permanent recovery attributable to aggregate formation

J Neurosci. 2010 Mar 10;30(10):3675-88. doi: 10.1523/JNEUROSCI.5673-09.2010.

Abstract

The presence of intracellular ubiquitylated inclusions in neurodegenerative disorders and the role of the ubiquitin/proteasome system (UPS) in degrading abnormal hazardous proteins have given rise to the hypothesis that UPS-impairment underlies neurodegenerative processes. However, this remains controversial for polyglutamine disorders such as Huntington disease (HD). Whereas studies in cellular models have provided evidence in favor of UPS-impairment attributable to expression of the N-terminal fragment of mutant huntingtin (N-mutHtt), similar studies on mouse models failed to do so. Furthermore, we have recently shown that the increase in polyubiquitin conjugates reported in the brain of N-mutHtt mice occurs in the absence of a general UPS-impairment. In the present study we aim to clarify the potential of N-mutHtt to impair UPS function in vivo as well as the mechanisms by which neurons may adapt after prolonged exposure to N-mutHtt in genetic models. By combining UPS reporter mice with an inducible mouse model of HD, we demonstrate for the first time polyglutamine-induced global UPS-impairment in vivo. UPS-impairment occurred transiently after acute N-mutHtt expression and restoration correlated with appearance of inclusion bodies (IBs). Consistently, UPS recovery did not take place when IB formation was prevented through administration of N-mutHtt aggregation-inhibitors in both cellular and animal models. Finally, no UPS-impairment was detected in old mice constitutively expressing N-mutHtt despite the age-associated decrease in brain proteasome activity. Therefore, our data reconcile previous contradictory reports by showing that N-mutHtt can indeed impair UPS function in vivo and that N-mutHtt aggregation leads to long lasting restoration of UPS function.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Aggregation / genetics
  • Disease Models, Animal*
  • Gene Expression Regulation*
  • Humans
  • Huntington Disease / genetics
  • Huntington Disease / metabolism
  • Inclusion Bodies / genetics
  • Inclusion Bodies / metabolism
  • Male
  • Mice
  • Mice, Transgenic
  • Peptides / genetics*
  • Peptides / metabolism
  • Peptides / physiology
  • Proteasome Endopeptidase Complex / genetics
  • Proteasome Endopeptidase Complex / metabolism
  • Proteasome Inhibitors*
  • Time Factors
  • Ubiquitin / antagonists & inhibitors*
  • Ubiquitin / genetics
  • Ubiquitin / metabolism

Substances

  • Peptides
  • Proteasome Inhibitors
  • Ubiquitin
  • polyglutamine
  • Proteasome Endopeptidase Complex