Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus

Theor Appl Genet. 2010 Jun;121(1):181-93. doi: 10.1007/s00122-010-1301-1. Epub 2010 Mar 10.

Abstract

Phosphorus (P) deficiency in soils is a major limiting factor for crop growth worldwide. Changes in root morphology and architecture represent as an important mechanism of adaptation of plants to low P (LP) stress. To elucidate the genetic control of tolerance to P deficiency in Brassica napus, quantitative trait loci (QTL) for root morphology in response to LP were identified in three independent paper culture experiments, and dissected through QTL meta-analysis. In total, 62 significant QTL for total root length, root surface area, root volume, total dry weight, and plant P uptake under high and low P conditions were detected in the three experiments. Forty-five of these QTL were clustered within four linkage groups and were integrated into eight unique QTL by two rounds of QTL meta-analysis. Three of the unique QTL, uq.A1, uq.C3a and uq.C3b, were specific for LP condition. uq.C3a and uq.C3b were identified specifically for root traits and P uptake under LP stress, and may contribute to the adaptability of B. napus to P deficiency. Two functional markers, BnIPS2-C3 and BnGPT1-C3, which were developed from the genes AtIPS2 and AtGPT1 in Arabidopsis, were located in the confidence intervals of uq.C3a and uq.C3b, respectively. And AtGPT1 that corresponded to the interval of uq.C3b by in silico mapping was a possible candidate gene of uq.C3b. These results confirmed the importance of root traits for the adaptability of B. napus to LP and partially revealed the genetic basis of tolerance to P deficiency. These findings should be valuable for further study of the mechanism of P efficiency and the breeding of P-efficient cultivars by marker-assisted selection.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brassica napus* / anatomy & histology
  • Brassica napus* / genetics
  • Brassica napus* / metabolism
  • Chromosome Mapping
  • Chromosomes, Plant
  • Genetic Linkage
  • Genetic Markers
  • Phenotype
  • Phosphorus / metabolism*
  • Plant Roots / anatomy & histology*
  • Plant Roots / metabolism
  • Quantitative Trait Loci*
  • Stress, Physiological

Substances

  • Genetic Markers
  • Phosphorus