High-rate anaerobic treatment of Fischer-Tropsch wastewater in a packed-bed biofilm reactor

Water Res. 2010 May;44(9):2745-52. doi: 10.1016/j.watres.2010.02.008. Epub 2010 Feb 11.

Abstract

This study investigates the anaerobic treatment of an industrial wastewater from a Fischer-Tropsch (FT) process in a continuous-flow packed-bed biofilm reactor operated under mesophilic conditions (35 degrees C). The considered synthetic wastewater has an overall chemical oxygen demand (COD) concentration of around 28g/L, mainly due to alcohols. A gradual increase of the organic load rate (OLR), from 3.4gCOD/L/d up to 20gCOD/L/d, was adopted in order to overcome potential inhibitory effects due to long-chain alcohols (>C6). At the highest applied OLR (i.e., 20gCOD/L/d) and a hydraulic retention time of 1.4d, the COD removal was 96% with nearly complete conversion of the removed COD into methane. By considering a potential of 200tCOD/d to be treated, this would correspond to a net production of electric energy of about 8x10(7)kWh/year. During stable reactor operation, a COD balance and batch tests showed that about 80% of the converted COD was directly metabolized through H(2)(-) and acetate-releasing reactions, which proceeded in close syntrophic cooperation with hydrogenotrophic and acetoclastic methanogenesis (contributing to about 33% and 54% of overall methane production, respectively). Finally, energetic considerations indicated that propionic acid oxidation was the metabolic conversion step most dependent on the syntrophic partnership of hydrogenotrophic methanogens and accordingly the most susceptible to variations of the applied OLR or toxicity effects.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetates / metabolism
  • Anaerobiosis
  • Biodegradation, Environmental*
  • Biofilms
  • Bioreactors
  • Industrial Waste / prevention & control
  • Methane / metabolism
  • Organic Chemicals / metabolism
  • Propionates / metabolism
  • Waste Disposal, Fluid / methods
  • Water Pollutants, Chemical / metabolism*
  • Water Purification / methods*

Substances

  • Acetates
  • Industrial Waste
  • Organic Chemicals
  • Propionates
  • Water Pollutants, Chemical
  • propionic acid
  • Methane