Capillary forces between particles at a liquid interface: general theoretical approach and interactions between capillary multipoles

Adv Colloid Interface Sci. 2010 Feb 26;154(1-2):91-103. doi: 10.1016/j.cis.2010.01.010. Epub 2010 Feb 6.

Abstract

The liquid interface around an adsorbed colloidal particle can be undulated because of roughness or heterogeneity of the particle surface, or due to the fact that the particle has non-spherical (e.g. ellipsoidal or polyhedral) shape. In such case, the meniscus around the particle can be expanded in Fourier series, which is equivalent to a superposition of capillary multipoles, viz. capillary charges, dipoles, quadrupoles, etc. The capillary multipoles attract a growing interest because their interactions have been found to influence the self-assembly of particles at liquid interfaces, as well as the interfacial rheology and the properties of particle-stabilized emulsions and foams. As a rule, the interfacial deformation in the middle between two adsorbed colloidal particles is small. This fact is utilized for derivation of accurate asymptotic expressions for calculating the capillary forces by integration in the midplane, where the Young-Laplace equation can be linearized and the superposition approximation can be applied. Thus, we derived a general integral expression for the capillary force, which was further applied to obtain convenient asymptotic formulas for the force and energy of interaction between capillary multipoles of arbitrary orders. The new analytical expressions have a wider range of validity in comparison with the previously published ones. They are applicable not only for interparticle distances that are much smaller than the capillary length, but also for distances that are comparable or greater than the capillary length.