Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways

Ann Biomed Eng. 2010 May;38(5):1836-53. doi: 10.1007/s10439-010-9956-y. Epub 2010 Feb 17.

Abstract

The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Airway Remodeling*
  • Humans
  • Stress, Mechanical