Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology

Appl Microbiol Biotechnol. 2010 Mar;86(2):397-402. doi: 10.1007/s00253-009-2387-8. Epub 2010 Feb 5.

Abstract

Peptide nucleic acids (PNAs) are nucleic acid analogs having attractive properties such as quiet stability against nucleases and proteases, and they form strong complexes with complementary strands of DNA or RNA. Because of this attractive nature, PNA is often used in antisense technology to inhibit gene expression and microbial cell growth with high specificity. Many bacterial antisense or antiribosomal studies using PNA oligomers have been reported so far, and parameters to design effective antisense PNAs and to improve PNA cell entry for efficient inhibition of bacterial growth have been presented. However, there are still several obstacles such as low cellular uptake of PNA while applying antisense PNAs to a complex microbial community. On overcoming these problems, the PNA antisense technique might become a very attractive tool not only for controlling the microbial growth but also for further elucidating microbial ecology in complex microbial consortia. Here, we summarize and present recent studies on the development of antimicrobial PNAs targeting mRNAs and rRNAs. In addition, the application potentiality of antisense techniques in nonclinical biotechnology fields is discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacteria / drug effects*
  • Biotechnology / methods*
  • Growth Inhibitors / pharmacology*
  • Oligonucleotides, Antisense / pharmacology*
  • Peptide Nucleic Acids / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Growth Inhibitors
  • Oligonucleotides, Antisense
  • Peptide Nucleic Acids