A transmural gradient in the cardiac Na/K pump generates a transmural gradient in Na/Ca exchange

J Membr Biol. 2010 Feb;233(1-3):51-62. doi: 10.1007/s00232-010-9224-y. Epub 2010 Feb 4.

Abstract

We previously demonstrated a transmural gradient in Na/K pump current (I (P)) and [Na(+)]( i ), with the highest maximum I (P) and lowest [Na(+)]( i ) in epicardium. The present study examines the relationship between the transmural gradient in I (P) and Na/Ca exchange (NCX). Myocytes were isolated from canine left ventricle. Whole-cell patch clamp was used to measure current generated by NCX (I (NCX)) and inward background calcium current (I (ibCa)), defined as inward current through Ca(2+) channels less outward current through Ca(2+)-ATPase. When resting myocytes from endocardium (Endo), midmyocardium (Mid) or epicardium (Epi) were studied in the same conditions, I (NCX) was the same and I (ibCa) was zero. Moreover, Western blots were consistent with NCX protein being uniform across the wall. However, the gradient in [Na(+)]( i ), with I (ibCa) = 0, should create a gradient in [Ca(2+)]( i ). To test this hypothesis, we measured resting [Ca(2+)]( i ) using two methods, based on either transport or the Ca(2+)-sensitive dye Fura2. Both methods demonstrated a significant transmural gradient in resting [Ca(2+)]( i ), with Endo > Mid > Epi. This gradient was eliminated by exposing Epi to sufficient ouabain to partially inhibit Na/K pumps, thus increasing [Na(+)]( i ) to values similar to those in Endo. These data support the existence of a transmural gradient for Ca(2+) removal by NCX. This gradient is not due to differences in expression of NCX; rather, it is generated by a transmural gradient in [Na(+)]( i ), which is due to a transmural gradient in plasma membrane expression of the Na/K pump.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Calcium / metabolism
  • Cells, Cultured
  • Dogs
  • Heart Ventricles / metabolism
  • Models, Biological
  • Muscle Cells / metabolism*
  • Patch-Clamp Techniques
  • Potassium / metabolism*
  • Sodium / metabolism*
  • Sodium-Potassium-Exchanging ATPase / metabolism*

Substances

  • Sodium
  • Sodium-Potassium-Exchanging ATPase
  • Potassium
  • Calcium