Ca2+-driven intestinal HCO(3)(-) secretion and CaCO3 precipitation in the European flounder in vivo: influences on acid-base regulation and blood gas transport

Am J Physiol Regul Integr Comp Physiol. 2010 Apr;298(4):R870-6. doi: 10.1152/ajpregu.00513.2009. Epub 2010 Feb 3.

Abstract

Marine teleost fish continuously ingest seawater to prevent dehydration and their intestines absorb fluid by mechanisms linked to three separate driving forces: 1) cotransport of NaCl from the gut fluid; 2) bicarbonate (HCO(3)(-)) secretion and Cl(-) absorption via Cl(-)/HCO(3)(-) exchange fueled by metabolic CO(2); and 3) alkaline precipitation of Ca(2+) as insoluble CaCO(3), which aids H(2)O absorption). The latter two processes involve high rates of epithelial HCO(3)(-) secretion stimulated by intestinal Ca(2+) and can drive a major portion of water absorption. At higher salinities and ambient Ca(2+) concentrations the osmoregulatory role of intestinal HCO(3)(-) secretion is amplified, but this has repercussions for other physiological processes, in particular, respiratory gas transport (as it is fueled by metabolic CO(2)) and acid-base regulation (as intestinal cells must export H(+) into the blood to balance apical HCO(3)(-) secretion). The flounder intestine was perfused in vivo with salines containing 10, 40, or 90 mM Ca(2+). Increasing the luminal Ca(2+) concentration caused a large elevation in intestinal HCO(3)(-) production and excretion. Additionally, blood pH decreased (-0.13 pH units) and plasma partial pressure of CO(2) (Pco(2)) levels were elevated (+1.16 mmHg) at the highest Ca perfusate level after 3 days of perfusion. Increasing the perfusate [Ca(2+)] also produced proportional increases in net acid excretion via the gills. When the net intestinal flux of all ions across the intestine was calculated, there was a greater absorption of anions than cations. This missing cation flux was assumed to be protons, which vary with an almost 1:1 relationship with net acid excretion via the gill. This study illustrates the intimate link between intestinal HCO(3)(-) production and osmoregulation with acid-base balance and respiratory gas exchange and the specific controlling role of ingested Ca(2+) independent of any other ion or overall osmolality in marine teleost fish.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acid-Base Equilibrium
  • Acidosis / metabolism
  • Animals
  • Bicarbonates / metabolism*
  • Biological Transport
  • Calcium / metabolism*
  • Calcium / pharmacology
  • Calcium Carbonate / metabolism
  • Carbon Dioxide / metabolism
  • Carbonic Anhydrases / metabolism
  • Environment
  • Flounder / physiology*
  • Hydrogen-Ion Concentration
  • Intestinal Absorption
  • Intestines / physiology
  • Kinetics
  • Perfusion
  • Seawater

Substances

  • Bicarbonates
  • Carbon Dioxide
  • Carbonic Anhydrases
  • Calcium Carbonate
  • Calcium