Diel cycling of DNA staining and nifH gene regulation in the unicellular cyanobacterium Crocosphaera watsonii strain WH 8501 (Cyanophyta)

Environ Microbiol. 2010 Apr;12(4):1001-10. doi: 10.1111/j.1462-2920.2010.02144.x. Epub 2010 Jan 26.

Abstract

Crocosphaera watsonii WH 8501 is a marine unicellular cyanobacterium that fixes nitrogen primarily during the dark phase of a light-dark (LD) cycle. Circadian clocks modulate gene transcription and cellular activity in many, if not all, cyanobacteria. A model for circadian control has been proposed in cyanobacteria, called the oscilloid model, which is based on topological changes of nucleoid DNA which in turn regulates gene transcription. In this study, the marine unicellular diazotrophic cyanobacteria C. watsonii WH 8501 and Cyanothece sp. ATCC 51142 were found to have daily fluctuations in DNA staining using Hoechst 33342 and SYBR I Green fluorescent dyes. Up to 20-fold decreases in DNA fluorescence of Hoechst-stained cells were observed during the dark phase when cultures were grown with a 12:12 LD cycle or under continuous light (LL). The variation in DNA staining was consistent with changes in DNA topology proposed in the oscilloid model. The abundance of nifH transcripts in C. watsonii WH 8501 was rhythmic under LD and LL cycles, consistent with a circadian rhythm. Cycles of DNA fluorescence and photosynthetic efficiency were disrupted when cultures were shifted into an early dark phase; however, nifH transcripts predictably increased in abundance following the premature transition from light to darkness. Thus, nifH gene expression in C. watsonii WH 8501 appears to be influenced by both circadian and environmental factors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Circadian Rhythm*
  • Cyanobacteria / genetics
  • Cyanobacteria / metabolism
  • Cyanobacteria / physiology*
  • DNA, Bacterial / analysis
  • Flow Cytometry
  • Fluorescence
  • Gene Expression Regulation, Bacterial
  • Nitrogen Fixation*
  • Oxidoreductases / genetics*
  • Photoperiod
  • Photosynthesis*
  • Reverse Transcriptase Polymerase Chain Reaction

Substances

  • DNA, Bacterial
  • Oxidoreductases
  • nitrogenase reductase