Frictional forces between strongly compressed, nonentangled polymer brushes: molecular dynamics simulations and scaling theory

Langmuir. 2010 May 4;26(9):6418-29. doi: 10.1021/la904119c.

Abstract

By means of molecular dynamics simulations and scaling theory we study the response of opposing polymer brushes to constant shear motion under good solvent conditions. Model systems that contain explicit solvent molecules (Lennard-Jones dimers) are compared to solvent-free systems while varying of the distance between the grafted layers and their molecular parameters, chain length and grafting density. Our study reveals a power-law dependence of macroscopic transport properties on the Weissenberg number, W, beyond linear response. For instance, we find that the kinetic friction constant scales as mu approximately W(0.57) for large values of W. We develop a scaling theory that describes our data and previous numerical data including recent experiments.