Srs2: the "Odd-Job Man" in DNA repair

DNA Repair (Amst). 2010 Mar 2;9(3):268-75. doi: 10.1016/j.dnarep.2010.01.007. Epub 2010 Jan 21.

Abstract

Homologous recombination plays a key role in the maintenance of genome integrity, especially during DNA replication and the repair of double-stranded DNA breaks (DSBs). Just a single un-repaired break can lead to aneuploidy, genetic aberrations or cell death. DSBs are caused by a vast number of both endogenous and exogenous agents including genotoxic chemicals or ionizing radiation, as well as through replication of a damaged template DNA or the replication fork collapse. It is essential for cell survival to recognise and process DSBs as well as other toxic intermediates and launch most appropriate repair mechanism. Many helicases have been implicated to play role in these processes, however their detail roles, specificities and co-operativity in the complex protein-protein interaction networks remain unclear. In this review we summarize the current knowledge about Saccharomyces cerevisiae helicase Srs2 and its effect on multiple DNA metabolic processes that generally affect genome stability. It would appear that Srs2 functions as an "Odd-Job Man" in these processes to make sure that the jobs proceed when and where they are needed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • DNA Helicases / chemistry
  • DNA Helicases / metabolism*
  • DNA Repair*
  • DNA Replication
  • DNA, Fungal / metabolism*
  • Genomic Instability
  • Humans
  • Saccharomyces cerevisiae / enzymology*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / metabolism*

Substances

  • DNA, Fungal
  • Saccharomyces cerevisiae Proteins
  • SRS2 protein, S cerevisiae
  • DNA Helicases