Disaggregases in 4 dimensions

Curr Opin Struct Biol. 2010 Feb;20(1):46-53. doi: 10.1016/j.sbi.2009.12.014. Epub 2010 Jan 18.

Abstract

Non-destructive dissagregation of protein aggregates is a formidable task mediated by the specialized AAA+ chaperone Hsp104/ClpB in combination with the Hsp70/DnaK chaperone system. The exact mechanism of how the hexameric Hsp104/ClpB proteins perform the task of protein disaggregation or remodeling is largely unknown. The process is ATP-dependent and tight coupling between the ATPase domains within the hexameric ring-complex could be observed. While substrate translocation through the central pore of the ring-shaped hexamer appears to be a central mechanism shared with other AAA+ proteins, a middle domain unique to Hsp104/ClpB could be involved in specific features of the Hsp/ClpB mechanism and its regulation. Recent findings underline the dynamic properties of the molecular complex and might provide a basis to understand substrate interaction, regulation of disaggregation activity, and interactions with co-chaperones.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biomechanical Phenomena
  • Heat-Shock Proteins / chemistry*
  • Heat-Shock Proteins / metabolism
  • Protein Structure, Tertiary

Substances

  • Heat-Shock Proteins