Experiments and modelling of phenanthrene biodegradation in the aqueous phase by a mixed culture

J Environ Sci (China). 2006;18(1):147-53.

Abstract

Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.

MeSH terms

  • Chromatography, High Pressure Liquid
  • Models, Theoretical*
  • Phenanthrenes / metabolism*
  • Soil Pollutants / metabolism*
  • Spectrophotometry, Ultraviolet

Substances

  • Phenanthrenes
  • Soil Pollutants
  • phenanthrene