Nonlinear analysis of electroencephalogram in schizophrenia patients with persistent auditory hallucination

Psychiatry Investig. 2008 Jun;5(2):115-20. doi: 10.4306/pi.2008.5.2.115. Epub 2008 Jun 30.

Abstract

Objective: The recent nonlinear analyses of electroencephalogram (EEG) data have shown that the correlation dimension (D2) reflects the degree of integration of information processing in the brain. There is now considerable evidence that auditory hallucination (AH) reflects dysfunctional gamma and beta frequency oscillations. Gamma oscillations are thought to reflect internally driven representations of objects, and the occurrence of subsequent beta oscillations can reflect the modification of the neuronal circuitry used to encode the sensory perception. The purpose of this study was to test whether AH in schizophrenia patients is reflected in abnormalities in D2 in their EEG, especially in the gamma and beta frequency bands.

Methods: Twenty-five schizophrenia patients with a history of treatment-refractory AH over at least the past 2 years, and 23 schizophrenia patients with no AH (N-AH) within the past 2 years were recruited for the study. Artifact-free 30-s EEG epochs during rest were examined for D2.

Results: The AH patients showed significantly increased gamma frequency D2 in Fp2 and decreased beta frequency D2 in the P3 region compared with the N-AH patients. These results imply that gamma frequency D2 in the right prefrontal cortex is more chaotic and that beta frequency D2 in the left parietal cortex is more coherent (less chaotic) in AH patients than in N-AH patients.

Conclusion: Our study supports the previous evidence indicating that gamma and beta oscillations are pivotal to AH, and also shows the distinctive dimensional complexity between the right prefrontal and left parietal cortexes as the underlying biological correlates of AH in schizophrenia patients.

Keywords: Auditory hallucination; Correlation dimension; Dimensional complexity; Electroencephalogram; Gamma and beta frequency oscillations; Schizophrenia.