Metarhizium anisopliae conidial responses to lipids from tick cuticle and tick mammalian host surface

J Invertebr Pathol. 2010 Feb;103(2):132-9. doi: 10.1016/j.jip.2009.12.010. Epub 2009 Dec 29.

Abstract

Conidial germination and the formation of appressoria are important events in the interactions between entomopathogenic fungi and their arthropod hosts. In this study, we demonstrate the effects of lipids extracted from tick epicuticle and the surface of a mammalian host (calf) on conidial germination and the development of appressoria in two subspecies of Metarhizium anisopliae, M. anisopliae var. anisopliae (M.an.an.-7) and M. anisopliae var. acridum (M.an.ac.-5), which have different levels of virulence toward ticks. Pentane extracts of epicuticles of ticks susceptible and resistant to fungal infection always stimulated the germination of M.an.an.-7 conidia and the development of their appressoria; whereas the effects of dichloromethane (DCM) extracts of tick epicuticle varied depending on the tick. The DCM extracts from most of the tick species and developmental stages stimulated conidial germination and/or the formation of appressoria in M.an.an.-7. However, a DCM extract of lipids from the most resistant tick, engorged Hyalomma excavatum female, inhibited the germination of M.an.an.-7 conidia. Conidia of the non-virulent M.an.ac.-5 did not germinate on agarose amended with any of the examined tick extracts. However, when the tick extracts were placed on bactoagar, conidial germination increased 7- to 8-fold. Extracts from the skin, hair and ear secretions of a calf stimulated conidial germination and the formation of appressoria in M.an.an.-7, but not M.an.ac.-5. This study demonstrates that lipids from tick epicuticles and mammalian skin selectively affect the germination of conidia of entomopathogenic fungi. The effects of these lipids may explain the variability in tick control these fungi provide for different hosts.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cattle
  • Host-Pathogen Interactions / physiology
  • Lipids / physiology*
  • Metarhizium / physiology*
  • Spores, Fungal / physiology*
  • Ticks / microbiology*
  • Ticks / physiology

Substances

  • Lipids