Nitrobenzene removal in bioelectrochemical systems

Environ Sci Technol. 2009 Nov 15;43(22):8690-5. doi: 10.1021/es9020266.

Abstract

Nitrobenzene occurs as a pollutant in wastewaters originating from numerous industrial and agricultural activities. It needs to be removed prior to discharge to sewage treatment works because of its high toxicity and persistence. In this study, we investigated the use of a bioelectrochemical system (BES) to remove nitrobenzene at a cathode coupled to microbial oxidation of acetate at an anode. Effective removal of nitrobenzene at rates up to 1.29 +/- 0.04 mol m(-3) TCC d(-1) (total cathodic compartment, TCC) was achieved with concomitant energy recovery. Correspondingly, the formation rate for the reduction product aniline was 1.14 +/- 0.03 mol m(-3) TCC d(-1). Nitrobenzene removal and aniline formation rates were significantly enhanced when the BES was supplied with power, reaching 8.57 +/- 0.03 and 6.68 +/- 0.03 mol m(-3) TCC d(-1), respectively, at an energy consumption of 17.06 +/- 0.16 W m(-3) TCC (current density at 59.5 A m(-3) TCC). Compared to those of conventional anaerobic biological methods for nitrobenzene removal, the required dosage of organic cosubstrate was significantly reduced in this system. Although aniline was always identified as the major product of nitrobenzene reduction at the cathode of BES in this study, the Coulombic efficiencies of nitrobenzene removal and aniline formation were dependent on the current density of the BES.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bioelectric Energy Sources*
  • Electrochemical Techniques
  • Molecular Biology
  • Nitrobenzenes / chemistry*

Substances

  • Nitrobenzenes
  • nitrobenzene