Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases

Drug Metab Dispos. 2010 Mar;38(3):386-95. doi: 10.1124/dmd.109.031138. Epub 2009 Dec 10.

Abstract

We have examined the glucuronidation of psilocin, a hallucinogenic indole alkaloid, by the 19 recombinant human UDP-glucuronosyltransferases (UGTs) of subfamilies 1A, 2A, and 2B. The glucuronidation of 4-hydroxyindole, a related indole that lacks the N,N-dimethylaminoethyl side chain, was studied as well. UGT1A10 exhibited the highest psilocin glucuronidation activity, whereas the activities of UGTs 1A9, 1A8, 1A7, and 1A6 were significantly lower. On the other hand, UGT1A6 was by far the most active enzyme mediating 4-hydroxyindole glucuronidation, whereas the activities of UGTs 1A7-1A10 toward 4-hydroxyindole resembled their respective psilocin glucuronidation rates. Psilocin glucuronidation by UGT1A10 followed Michaelis-Menten kinetics in which psilocin is a low-affinity high-turnover substrate (K(m) = 3.8 mM; V(max) = 2.5 nmol/min/mg). The kinetics of psilocin glucuronidation by UGT1A9 was more complex and may be best described by biphasic kinetics with both intermediate (K(m1) = 1.0 mM) and very low affinity components. The glucuronidation of 4-hydroxyindole by UGT1A6 exhibited higher affinity (K(m) = 178 microM) and strong substrate inhibition. Experiments with human liver and intestinal microsomes (HLM and HIM, respectively) revealed similar psilocin glucuronidation activity in both samples, but a much higher 4-hydroxyindole glucuronidation rate was found in HLM versus HIM. The expression levels of UGTs 1A6-1A10 in different tissues were studied by quantitative real-time-PCR, and the results, together with the activity assays findings, suggest that whereas psilocin may be subjected to extensive glucuronidation by UGT1A10 in the small intestine, UGT1A9 is likely the main contributor to its glucuronidation once it has been absorbed into the circulation.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Glucuronides / analysis
  • Glucuronides / biosynthesis*
  • Glucuronides / chemistry
  • Glucuronosyltransferase / genetics
  • Glucuronosyltransferase / metabolism*
  • Hallucinogens / chemistry
  • Hallucinogens / isolation & purification
  • Hallucinogens / metabolism*
  • Humans
  • Indoles / metabolism*
  • Isoenzymes / metabolism
  • Kinetics
  • Liver / enzymology
  • Liver / metabolism
  • Metabolic Detoxication, Phase II
  • Microsomes / metabolism
  • Organ Specificity
  • Psilocybin / analogs & derivatives*
  • Psilocybin / chemistry
  • Psilocybin / isolation & purification
  • Psilocybin / metabolism
  • RNA, Messenger / metabolism
  • Recombinant Proteins / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Substrate Specificity
  • Sulfhydryl Reagents / chemistry
  • UDP-Glucuronosyltransferase 1A9

Substances

  • Glucuronides
  • Hallucinogens
  • Indoles
  • Isoenzymes
  • RNA, Messenger
  • Recombinant Proteins
  • Sulfhydryl Reagents
  • UGT1A9 protein, human
  • 4-hydroxyindole
  • Psilocybin
  • psilocin
  • UDP-glucuronosyltransferase, UGT1A6
  • bilirubin uridine-diphosphoglucuronosyl transferase 1A10
  • Glucuronosyltransferase
  • UDP-Glucuronosyltransferase 1A9