Review: Continuous hydrolysis and fermentation for cellulosic ethanol production

Bioresour Technol. 2010 Jul;101(13):4862-74. doi: 10.1016/j.biortech.2009.11.009. Epub 2009 Dec 14.

Abstract

Ethanol made biologically from a variety of cellulosic biomass sources such as agricultural and forestry residues, grasses, and fast growing wood is widely recognized as a unique sustainable liquid transportation fuel with powerful economic, environmental, and strategic attributes, but production costs must be competitive for these benefits to be realized. Continuous hydrolysis and fermentation processes offer important potential advantages in reducing costs, but little has been done on continuous processing of cellulosic biomass to ethanol. As shown in this review, some continuous fermentations are now employed for commercial ethanol production from cane sugar and corn to take advantage of higher volumetric productivity, reduced labor costs, and reduced vessel down time for cleaning and filling. On the other hand, these systems are more susceptible to microbial contamination and require more sophisticated operations. Despite the latter challenges, continuous processes could be even more important to reducing the costs of overcoming the recalcitrance of cellulosic biomass, the primary obstacle to low cost fuels, through improving the effectiveness of utilizing expensive enzymes. In addition, continuous processing could be very beneficial in adapting fermentative organisms to the wide range of inhibitors generated during biomass pretreatment or its acid catalyzed hydrolysis. If sugar generation rates can be increased, the high cell densities in a continuous system could enable higher productivities and yields than in batch fermentations.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Biomass
  • Biotechnology / methods
  • Biotechnology / trends*
  • Cellulose / chemistry*
  • Conservation of Natural Resources
  • Energy-Generating Resources*
  • Ethanol / chemistry*
  • Fermentation
  • Hexoses / chemistry
  • Hydrolysis
  • Kinetics
  • Lignin / chemistry*
  • Wood

Substances

  • Hexoses
  • lignocellulose
  • Ethanol
  • Cellulose
  • Lignin