An innovative application of a small-scale motion analysis technique to quantify human skin deformation in vivo

J Biomech. 2010 Mar 22;43(5):1002-6. doi: 10.1016/j.jbiomech.2009.11.009. Epub 2009 Dec 16.

Abstract

This study highlights a new experimental method developed to measure full-field deformation of human skin in vivo. The technique uses a small-scale Qualisys (Sweden) 3D motion capture system and an array of reflective markers placed on the forearm of five healthy volunteers. A load of up to 1.5N was applied to induce skin deformation by pulling a fine wire attached to the centre of the marker configuration. Loading and marker displacements were recorded simultaneously. 3D marker trajectory data was generated for three different load directions. Tests were repeated to investigate accuracy and repeatability. Calibration results indicate the accuracy of the motion capture system with an average residual of 0.05 mm. The procedure was found to be repeatable and accurate for five repeated tests of measured displacements with a maximum variance of 5%. Experimental data are presented to demonstrate robustness and the ability to produce significant outputs. For all five subjects, at 1N load, the mean and standard deviations of skin axial and lateral displacements were found to be 11.7+/-1.6mm and 12.3+/-3.3mm, respectively. The axial displacements ratio (u(90)/u(0)) ranges from 0.63 to 1.45 with mean+/-standard deviation of 0.982+/-0.34 and 0.982+/-0.32 for left and right arms, respectively. The experiments generated useful and accurate data that can be used to study the viscoelastic, hyperelastic or anisotropic behaviour of human skin. The measured displacements will be analysed further to determine the mechanical properties of skin using inverse Finite Element Analysis and Ogden model.

MeSH terms

  • Algorithms*
  • Computer Simulation
  • Elastic Modulus / physiology
  • Hardness / physiology
  • Humans
  • Models, Biological*
  • Physical Examination / methods*
  • Physical Stimulation / methods*
  • Skin Physiological Phenomena*