Is the spinal cord motoneuron exclusively a target in ALS? Comparison between astroglial reactivity in a rat model of familial ALS and in human sporadic ALS cases

Neurol Res. 2010 Oct;32(8):867-72. doi: 10.1179/174313209X414542.

Abstract

Objective: Motoneurons are the focus of most investigations of amyotrophic lateral sclerosis (ALS), while the astrocyte reaction is regarded as a phenomenon secondary to neuron degeneration. Since astroglial reactivity differed in different studies of human and animal ALS models and often varied from case to case, we examined and compared astrocyte reactivity within the anterior horns of the spinal cord in a transgenic rat model of familial ALS and in human sporadic ALS (sALS) cases.

Methods: Routine histological staining and immunohistochemical reactions to cytoskeletal proteins [neurofilaments, glial fibrillary acidic protein (GFAP), vimentin and tau] and proliferative markers (proliferating cell nuclear antigen and Ki-67).

Results: In human sALS cases and in rats at the early pre-symptomatic and symptomatic stages of the disease, the astroglial reaction was very weak, although there was visible evidence of the morphological manifestations of motoneuron degeneration. Poor immunoreactivity to the GFAP and vimentin antigens and increased expression of tau protein were observed in astrocytes, particularly in the rat model. The astrocyte reaction was evident during a short ‘transient’ phase of the disease in animals, between the asymptomatic and paretic stages. Proliferating cell nuclear antigen immunoreactivity in glial and neuronal nuclei was observed only in animal material.

Conclusions: Abnormalities in astrocyte cytoskeletal proteins are characteristic features for ALS, both in acquired and congenital forms of the disease. The cytoskeletal aberrations may lead to astroglial dysfunction and disturbances in glutamate uptake that may in turn increase the degeneration of motoneurons.

Publication types

  • Comparative Study

MeSH terms

  • Aged
  • Aged, 80 and over
  • Amyotrophic Lateral Sclerosis / metabolism*
  • Amyotrophic Lateral Sclerosis / pathology
  • Animals
  • Astrocytes / metabolism*
  • Astrocytes / pathology
  • Disease Models, Animal*
  • Humans
  • Middle Aged
  • Motor Neurons / metabolism*
  • Motor Neurons / pathology
  • Neurofilament Proteins / metabolism
  • Rats
  • Rats, Transgenic
  • Spinal Cord / metabolism*
  • Spinal Cord / pathology

Substances

  • Neurofilament Proteins