Resonant coupling in the heteronuclear alkali dimers for direct photoassociative formation of X(0,0) ultracold molecules

J Phys Chem A. 2010 Jan 14;114(1):81-6. doi: 10.1021/jp901803f.

Abstract

Promising pathways for photoassociative formation of ultracold heteronuclear alkali metal dimers in their lowest rovibronic levels (denoted X(0,0)) are examined using high-quality ab initio calculations of potential energy curves currently available. A promising pathway for KRb, involving the resonant coupling of the 2(1)Pi and 1(1)Pi states just below the lowest excited asymptote (K(4s) + Rb(5p(1/2))), is found to occur also for RbCs and less promisingly for KCs also. The resonant coupling of the 3(1)Sigma(+) and 1(1)Pi states, also just below the lowest excited asymptote, is found to be promising for LiNa, LiK, and LiRb and less promising for LiCs and KCs. Direct photoassociation to the 1(1)Pi state near dissociation appears promising in the final dimers NaK, NaRb, and NaCs, although detuning more than 100 cm(-1) below the lowest excited asymptote may be required.