Long-term persistence of tissue-engineered adipose flaps in a murine model to 1 year: an update

Plast Reconstr Surg. 2009 Oct;124(4):1077-1084. doi: 10.1097/PRS.0b013e3181b59ff6.

Abstract

Background: Tissue engineering of patient-specific adipose tissue has the potential to revolutionize reconstructive surgery. Numerous models have been described for the production of adipose tissue with success in the short term, but little has been reported on the stability of this tissue-engineered fat beyond 4 months.

Methods: A murine model of de novo adipogenesis producing a potentially transplantable adipose tissue flap within 4 to 6 weeks was developed in the authors' laboratory. In this study, the authors assess the ability of three-chamber (44-microl volume) configurations shown to be adipogenic in previous short-term studies (autograft, n = 8; open, n = 6; fat flap, n = 11) to maintain their tissue volume for up to 12 months in vivo, to determine the most adipogenic configuration in the long term.

Results: Those chambers having the most contact with existing vascularized adipose tissue (open and fat flap groups) showed increased mean adipose tissue percentage (77 +/- 5.6 percent and 81 +/- 6.9 percent, respectively; p < 0.0007) and volume (12 +/- 6.8 microl and 30 +/- 14 microl, respectively; p < 0.025) when compared with short-term controls and greater adipose tissue volume than the autograft (sealed) chamber group (4.9 +/- 5.8 microl; p = 0.0001) at 1 year. Inclusion of a vascularized fat flap within the chamber produced the best results, with new fat completely filling the chamber by 1 year.

Conclusions: These findings demonstrate that fat produced by tissue engineering is capable of maintaining its volume when the appropriate microenvironment is provided. This has important implications for the application of tissue-engineering techniques in humans.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue*
  • Animals
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Models, Animal
  • Surgical Flaps*
  • Time Factors
  • Tissue Engineering*