Phase I/II trial of bevacizumab and radiotherapy for locally advanced inoperable colorectal cancer: vasculature-independent radiosensitizing effect of bevacizumab

Clin Cancer Res. 2009 Nov 15;15(22):7069-76. doi: 10.1158/1078-0432.CCR-09-0688. Epub 2009 Nov 3.

Abstract

Purpose: Anti-vascular endothelial growth factor therapy enhances the activity of radiotherapy in experimental models, and bevacizumab has therapeutic activity in patients with metastatic colorectal cancer.

Experimental design: Twenty-two patients with locally advanced inoperable colorectal carcinomas (LA/I-CRC) were treated with conformal hypofractionated (3.4 Gy/fraction x 15) split-course accelerated radiotherapy (biological equivalent dose, 67.2 Gy) supported with amifostine, capecitabine (600 mg/m2 daily, 5 days/week), and bevacizumab (5 mg/kg every 2 weeks, five cycles). Biopsies from nine patients, performed before and 1 week after bevacizumab administration, were analyzed for changes in mRNA expression with Illumina gene arrays.

Results: No serious grade 3 chemotherapy-related side effects were recorded. There was low acute toxicity, with moist perineal desquamation noted in 2 of 22 patients, diarrhea grade 2 to 3 in 5 of 22 patients, and severe proctalgia in 2 of 22 patients. One patient died from Fournier's gangrene before treatment completion. Within a median follow-up of 18 months, two patients with preradiotheraphy direct involvement of adjacent organs expressed recto-vaginal/perineal fistula. Out of 19 evaluable cases, 13 (68.5%) showed complete response and 4 showed (21.1%) partial response. Fourteen patients are alive with no evidence of loco-regional relapse. In the gene array analysis, 30 known genes associated with transcription factors, DNA repair, and proliferation were downregulated by bevacizumab. DUSP1 gene was the most consistently downregulated transcript.

Conclusions: The combination of radiotherapy with bevacizumab is feasible and results in a high rate of durable complete responses in patients with LA/I-CRC. Radiosensitization may occur through a direct effect on tumor cells followed by a wide scale suppression of transcription factors and genes involved in DNA repair and proliferation.

Publication types

  • Clinical Trial
  • Clinical Trial, Phase I
  • Clinical Trial, Phase II
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Antibodies, Monoclonal / administration & dosage*
  • Antibodies, Monoclonal, Humanized
  • Bevacizumab
  • Biopsy
  • Cell Line, Tumor
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / radiotherapy*
  • Combined Modality Therapy / methods
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Male
  • Middle Aged
  • Neoplasm Metastasis
  • RNA, Messenger / metabolism
  • Radiation-Sensitizing Agents / therapeutic use*
  • Radiotherapy / methods*
  • Radiotherapy, Conformal / methods*
  • Treatment Outcome

Substances

  • Antibodies, Monoclonal
  • Antibodies, Monoclonal, Humanized
  • RNA, Messenger
  • Radiation-Sensitizing Agents
  • Bevacizumab