Polymer-induced ordering and phase separation in ionic surfactants

J Colloid Interface Sci. 2010 Feb 1;342(1):93-102. doi: 10.1016/j.jcis.2009.10.016. Epub 2009 Oct 12.

Abstract

We present a new method to induce phase separation in solutions of ionic surfactants. In this method, the phase separation is obtained either by addition of polyelectrolytes or nonionic polymers along with inorganic salt. As a result, the system separates into polyelectrolyte-rich (or nonionic polymer-rich) and surfactant-rich phase. Four types of the mixtures were investigated: (i) anionic surfactants and anionic polyelectrolytes, (ii) cationic surfactants and cationic polyelectrolytes, (iii) cationic surfactants and nonionic polymers, and (iv) anionic surfactants and nonionic polymers. We found that the addition of polyelectrolyte with the charge of the same sign as that of surfactant can induce the phase separation in a wide range of surfactant concentrations. The addition of nonionic polymers induces the phase separation only in solutions of cationic surfactants. Moreover, the addition of nonionic polymers induces the phase separation only for relatively high total content of polymer and surfactant in the mixture. We found however that the addition of inorganic salt to the mixture of cationic surfactant and nonionic polymer triggers the phase separation even for a small concentrations of surfactant. In our experiments, water as well as mixtures of water and polar solvents were employed as solvents. Based on the optical microscopy studies we found that the surfactant-rich phase represents hexagonal ordering.