The influence of weathering and organic matter on heavy metals lability in silicatic, Alpine soils

Sci Total Environ. 2010 Jan 15;408(4):931-46. doi: 10.1016/j.scitotenv.2009.10.005. Epub 2009 Oct 30.

Abstract

We investigated the effect of organic matter and weathering on the lability and solid phase speciation of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) in two contrasting subalpine regions in the Italian Alps. Cr, Ni and Cu could be linked to weathering. This was not the case for Pb. Since organic matter (OM) influences the solid phase speciation of heavy metals, the total organic C and N content, the C and N content of different density fractions of OM and also of the labile (oxidised by H(2)O(2)) and stable (H(2)O(2)-resistant) fractions were determined. Soil OM stocks were high and soils on north-facing slopes had more OM than the south-facing sites to which they were paired. Density measurements and the H(2)O(2) fractionation indicated that the higher OM content on north-facing sites was due to an accumulation of weakly degraded organic material. Due to higher weathering intensity on north-facing sites, the abundance of the EDTA-extractable heavy metals was higher than on south-facing sites. All EDTA-extractable heavy metals showed a good correlation to the water-soluble phenolic concentrations which indicates that the metals were probably translocated as metal-organic complexes. Pb and Cu correlate not only to the light (density < 1 g/cm(3)) and labile, organic fraction but also to the heavy (density > 2 g/cm(3)) and stable fraction. High-mountain ecosystems like the Alps are sensitive to changing environmental conditions such as global warming. A warmer climate and the more favourable conditions it brings for biological activity, especially at cooler sites, will probably lead in the short- to mid-term to an increased loss of accumulated, weakly degraded OM. As the Pb and Cu content is significantly related to the labile organic matter pools, the risk exists that an increase in OM mineralisation could affect the storage capacity and mobility of these metals in soils.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chelating Agents*
  • Ecosystem
  • Edetic Acid / chemistry
  • Environmental Monitoring
  • Humic Substances*
  • Italy
  • Metals, Heavy / chemistry*
  • Silicon Dioxide
  • Soil / analysis
  • Soil Pollutants / chemistry*
  • Weather*

Substances

  • Chelating Agents
  • Humic Substances
  • Metals, Heavy
  • Soil
  • Soil Pollutants
  • Silicon Dioxide
  • Edetic Acid