Aluminium-induced inhibition of root elongation in Arabidopsis is mediated by ethylene and auxin

J Exp Bot. 2010;61(2):347-56. doi: 10.1093/jxb/erp306. Epub 2009 Oct 25.

Abstract

Aluminium (Al) is phytotoxic when solubilized into Al(3+) in acidic soils. One of the earliest and distinct symptoms of Al(3+) toxicity is inhibition of root elongation. To decipher the mechanism by which Al(3+) inhibits root elongation, the role of ethylene and auxin in Al(3+)-induced inhibition of root elongation in Arabidopsis thaliana was investigated using the wild type and mutants defective in ethylene signalling (etr1-3 and ein2-1) and auxin polar transport (aux1-7 and pin2). Exposure of wild-type Arabidopsis to AlCl(3) led to a marked inhibition of root elongation, and elicited a rapid ethylene evolution and enhanced activity of the ethylene reporter EBS:GUS in root apices. Root elongation in etr1-3 and ein2-1 mutants was less inhibited by Al(3+) than that in wild-type plants. Ethylene synthesis inhibitors, Co(2+) and aminoethoxyvinylglycine (AVG), and an antagonist of ethylene perception (Ag(+)) abolished the Al(3+)-induced inhibition of root elongation. There was less inhibition of root elongation by Al(3+) in aux1-7 and pin2 mutants than in the wild type. The auxin polar transport inhibitor, naphthylphthalamic acid (NPA), substantially alleviated the Al(3+)-induced inhibition of root elongation. The Al(3+) and ethylene synthesis precursor aminocyclopropane carboxylic acid (ACC) increased auxin reporter DR5:GUS activity in roots. The Al(3+)-induced increase in DR5:GUS activity was reduced by AVG, while the Al(3+)-induced increase in EBS:GUS activity was not altered by NPA. Al(3+) and ACC increased transcripts of AUX1 and PIN2, and this effect was no longer observed in the presence of AVG and Co(2+). These findings indicate that Al(3+)-induced ethylene production is likely to act as a signal to alter auxin distribution in roots by disrupting AUX1- and PIN2-mediated auxin polar transport, leading to arrest of root elongation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aluminum Chloride
  • Aluminum Compounds / toxicity*
  • Arabidopsis / drug effects*
  • Arabidopsis / genetics
  • Arabidopsis / growth & development
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Chlorides / toxicity*
  • Ethylenes / metabolism*
  • Indoleacetic Acids / metabolism*
  • Plant Roots / drug effects
  • Plant Roots / genetics
  • Plant Roots / growth & development*
  • Plant Roots / metabolism
  • Signal Transduction / drug effects

Substances

  • Aluminum Compounds
  • Arabidopsis Proteins
  • Chlorides
  • Ethylenes
  • Indoleacetic Acids
  • Aluminum Chloride
  • ethylene