Assessing coastal plumes in a region of multiple discharges: the U.S.-Mexico border

Environ Sci Technol. 2009 Oct 1;43(19):7450-7. doi: 10.1021/es900775p.

Abstract

The San Diego/Tijuana border region has several environmental challenges with regard to assessing water quality impacts resulting from local coastal ocean discharges for which transport is not hindered by political boundaries. While an understanding of the fate and transport of these discharged plumes has a broad audience, the spatial and temporal scales of the physical processes present numerous challenges in conducting assessment with any fidelity. To address these needs, a data-driven model of the transport of both shoreline and offshore discharges is developed and operated in a hindcast mode for a four-year period to analyze regional connectivity between the discharges and the receiving of waters and the coastline. The plume exposure hindcast model is driven by surface current data generated by a network of high-frequency radars. Observations provided by both boat-based CTD measurements and fixed oceanographic moorings are used with the Roberts-Snyder-Baumgartner model to predict the plume rise height. The surface transport model outputs are compared with shoreline samples of fecal indicator bacteria (FIB), and the skill of the model to assess low water quality is evaluated using receiver operating characteristic (ROC) analysis.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Bacteria / isolation & purification
  • Environmental Monitoring / methods*
  • Mexico
  • Politics
  • Time Factors
  • United States
  • Water Microbiology
  • Water Movements
  • Water Pollution / analysis*