Graphene to graphane: a theoretical study

Nanotechnology. 2009 Nov 18;20(46):465704. doi: 10.1088/0957-4484/20/46/465704. Epub 2009 Oct 21.

Abstract

Graphane is a two-dimensional system consisting of a single layer of fully saturated (sp(3) hybridization) carbon atoms. In an ideal graphane structure C-H bonds exhibit an alternating pattern (up and down with relation to the plane defined by the carbon atoms). In this work we have investigated, using ab initio and reactive molecular dynamics simulations, the role of H frustration (breaking the H atoms' up and down alternating pattern) in graphane-like structures. Our results show that a significant percentage of uncorrelated H frustrated domains are formed in the early stages of the hydrogenation process leading to membrane shrinkage and extensive membrane corrugations. These results also suggest that large domains of perfect graphane-like structures are unlikely to be formed, as H frustrated domains are always present.

Publication types

  • Research Support, Non-U.S. Gov't