Gum arabic-coated magnetic nanoparticles for potential application in simultaneous magnetic targeting and tumor imaging

AAPS J. 2009 Dec;11(4):693-9. doi: 10.1208/s12248-009-9151-y. Epub 2009 Oct 20.

Abstract

Magnetic iron oxide nanoparticles (MNP) coated with gum arabic (GA), a biocompatible phytochemical glycoprotein widely used in the food industry, were successfully synthesized and characterized. GA-coated MNP (GA-MNP) displayed a narrow hydrodynamic particle size distribution averaging about 100 nm; a GA content of 15.6% by dry weight; a saturation magnetization of 93.1 emu/g Fe; and a superparamagnetic behavior essential for most magnetic-mediated applications. The GA coating offers two major benefits: it both enhances colloidal stability and provides reactive functional groups suitable for coupling of bioactive compounds. In vitro results showed that GA-MNP possessed a superior stability upon storage in aqueous media when compared to commercial MNP products currently used in magnetic resonance imaging (MRI). In addition, significant cellular uptake of GA-MNP was evaluated in 9L glioma cells by electron spin resonance (ESR) spectroscopy, fluorescence microscopy, and MRI analyses. Based on these findings, it was hypothesized that GA-MNP might be utilized as a MRI-visible drug carrier in achieving both magnetic tumor targeting and intracellular drug delivery. Indeed, preliminary in vivo investigations validate this clinical potential. MRI visually confirmed the accumulation of GA-MNP at the tumor site following intravenous administration to rats harboring 9L glioma tumors under the application of an external magnetic field. ESR spectroscopy quantitatively revealed a 12-fold increase in GA-MNP accumulation in excised tumors when compared to contralateral normal brain. Overall, the results presented show promise that GA-MNP could potentially be employed to achieve simultaneous tumor imaging and targeted intra-tumoral drug delivery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brain Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Survival
  • Drug Carriers
  • Drug Delivery Systems / methods*
  • Drug Stability
  • Excipients
  • Ferric Compounds / administration & dosage
  • Fluorescent Dyes
  • Glioma / pathology
  • Gum Arabic*
  • Magnetic Resonance Imaging
  • Magnetics
  • Microscopy, Fluorescence
  • Nanoparticles / administration & dosage*
  • Nanoparticles / chemistry
  • Neoplasm Transplantation
  • Neoplasms / pathology*
  • Particle Size
  • Rats
  • Rats, Inbred F344
  • Rhodamines
  • X-Ray Diffraction

Substances

  • Drug Carriers
  • Excipients
  • Ferric Compounds
  • Fluorescent Dyes
  • Rhodamines
  • ferric oxide
  • Gum Arabic
  • rhodamine B