Cycling behavior and memory formation

J Neurosci. 2009 Oct 14;29(41):12824-30. doi: 10.1523/JNEUROSCI.3353-09.2009.

Abstract

Circadian research has spent considerable effort in the determining clock output pathways, including identifying both physiological and behavioral processes that demonstrate significant time-of-day variation. Memory formation and consolidation represent notable processes shaped by endogenous circadian oscillators. To date, very few studies on memory mechanisms have considered potential confounding effects of time-of-day and the organism's innate activity cycles (e.g., nocturnal, diurnal, or crepuscular). The following studies highlight recent work describing this interactive role of circadian rhythms and memory formation, and were presented at a mini-symposium at the 2009 annual meeting of the Society for Neuroscience. The studies illustrate these time-of-day observations in a variety of behavioral paradigms and model organisms, including olfactory avoidance conditioning in Drosophila, long-term sensitization in Aplysia, active-avoidance conditioning in Zebrafish, and classical fear conditioning in rodents, suggesting that the circadian influence on memory behavior is highly conserved across species. Evidence also exists for a conserved mechanistic relationship between specific cycling molecules and memory formation, and the extent to which proper circadian cycling of these molecules is necessary for optimal cognitive performance. Studies describe the involvement of the core clock gene period, as well as vasoactive intestinal peptide, melatonin, and the cAMP/MAPK (cAMP/mitogen-activated protein kinase) cascade. Finally, studies in humans describe evidence for alterations in cognitive performance based on an interaction between sleep-wake homeostasis and the internal circadian clock. Conservation of a functional relationship between circadian rhythms with learning and memory formation across species provides a critical framework for future analysis of molecular mechanisms underlying complex behavior.

Publication types

  • Review

MeSH terms

  • Animals
  • Association Learning / physiology
  • Biological Clocks / genetics
  • Biological Clocks / physiology*
  • Circadian Rhythm / genetics
  • Circadian Rhythm / physiology*
  • Cognition / physiology
  • Humans
  • Memory / physiology*
  • Phylogeny
  • Sleep / physiology